H2A.Z helps genes remember their history so we can remember ours

Zovkic IB, Walters BJ

Bioessays 2015 Apr;

PMID: 25880368


Histone variant exchange is a novel epigenetic regulator of cognition. We speculate that H2A.Z, a variant of canonical histone H2A, exerts unique effects on transcription during distinct stages of memory formation, ultimately acting to maintain memory of previous transcriptional states and poise genes for re-activation. Hippocampus-dependent memory formation is initiated by transient expression of memory-related genes, which support the storage of recently acquired memories. Soon after, memories undergo systems consolidation, which transfers memories from the hippocampus to the cortex for long-term storage, and requires ongoing re-activation of memory-related genes. We speculate that learning-induced H2A.Z eviction from nucleosomes initially contributes to stimulus-induced transcriptional induction needed for the initial process of memory consolidation. During systems consolidation, we speculate that delayed incorporation of H2A.Z into nucleosomes of memory-related genes in the cortex is needed to poise genes for rapid re-activation, thus supporting the long-term process of memory stabilization. Also watch the Video Abstract.

Localization of heat shock protein HSPA6 (HSP70B’) to sites of transcription in cultured differentiated human neuronal cells following thermal stress

Khalouei S, Chow AM, Brown IR

J. Neurochem. 2014 Dec;131(6):743-54

PMID: 25319762


Heat shock proteins (Hsps) are a set of highly conserved proteins that are involved in cellular repair and protective mechanisms. In order to identify potential stress-sensitive sites in differentiated SH-SY5Y human neuronal cells, localization of two inducible members of the HSPA (HSP70) family was investigated, namely HSPA6 (HSP70B’) and HSPA1A (HSP70-1). Following heat shock, yellow fluorescent protein (YFP)-tagged HSPA6 and HSPA1A proteins localized to nuclear speckles that are enriched in RNA splicing factors (identified by SC35 and SON marker proteins) and then to the granular component of the nucleolus (identified by nucleophosmin). Subsequently, YFP-HSPA6 protein, but not YFP-HSPA1A, localized to the periphery of nuclear speckles that are sites of RNA transcription. The HSPA6 gene is present in the human genome but not in genomes of rat and mouse. Hence, current animal models of neurodegenerative diseases are lacking a potentially protective member of the HSPA family. Potential stress-sensitive sites were identified in differentiated human SH-SY5Y cells by the localization of HSPA6 (HSP70B’) and HSPA1A (HSP70-1) to nuclear components following heat shock. HSPA6 and HSPA1A rapidly moved to nuclear speckles, enriched in RNA splicing factors, then to the granular layer of the nucleolus. Subsequently, HSPA6 exhibited a novel localization not observed for the more widely studied HSPA1A, namely association with the periphery of nuclear speckles that are sites of transcription. HS = heat shock; HSPA6 = HSP70B’ protein; HSPA1A = HSP70-1 protein.

Heat shock response and homeostatic plasticity

Karunanithi S, Brown IR

Front Cell Neurosci 2015;9:68

PMID: 25814928


Heat shock response and homeostatic plasticity are mechanisms that afford functional stability to cells in the face of stress. Each mechanism has been investigated independently, but the link between the two has not been extensively explored. We explore this link. The heat shock response enables cells to adapt to stresses such as high temperature, metabolic stress and reduced oxygen levels. This mechanism results from the production of heat shock proteins (HSPs) which maintain normal cellular functions by counteracting the misfolding of cellular proteins. Homeostatic plasticity enables neurons and their target cells to maintain their activity levels around their respective set points in the face of stress or disturbances. This mechanism results from the recruitment of adaptations at synaptic inputs, or at voltage-gated ion channels. In this perspective, we argue that heat shock triggers homeostatic plasticity through the production of HSPs. We also suggest that homeostatic plasticity is a form of neuroprotection.