Advanced In vivo Use of CRISPR/Cas9 and Anti-sense DNA Inhibition for Gene Manipulation in the Brain

Walters BJ, Azam AB, Gillon CJ, Josselyn SA, Zovkic IB

Front Genet 2015;6:362

PMID: 26793235


Gene editing tools are essential for uncovering how genes mediate normal brain-behavior relationships and contribute to neurodegenerative and neuropsychiatric disorders. Recent progress in gene editing technology now allows neuroscientists unprecedented access to edit the genome efficiently. Although many important tools have been developed, here we focus on approaches that allow for rapid gene editing in the adult nervous system, particularly CRISPR/Cas9 and anti-sense nucleotide-based techniques. CRISPR/Cas9 is a flexible gene editing tool, allowing the genome to be manipulated in diverse ways. For instance, CRISPR/Cas9 has been successfully used to knockout genes, knock-in mutations, overexpress or inhibit gene activity, and provide scaffolding for recruiting specific epigenetic regulators to individual genes and gene regions. Moreover, the CRISPR/Cas9 system may be modified to target multiple genes at one time, affording simultaneous inhibition and overexpression of distinct genetic targets. Although many of the more advanced applications of CRISPR/Cas9 have not been applied to the nervous system, the toolbox is widely accessible, such that it is poised to help advance neuroscience. Anti-sense nucleotide-based technologies can be used to rapidly knockdown genes in the brain. The main advantage of anti-sense based tools is their simplicity, allowing for rapid gene delivery with minimal technical expertise. Here, we describe the main applications and functions of each of these systems with an emphasis on their many potential applications in neuroscience laboratories.

RXR/USP and EcR are critical for the regulation of reproduction and the control of JH biosynthesis in Diploptera punctata

Hult EF, Huang J, Marchal E, Lam J, Tobe SS

J. Insect Physiol. 2015 Sep;80:48-60

PMID: 25917982


During development and reproduction the response to ecdysteroids is mediated by a heterodimeric receptor complex comprising the retinoid X receptor/ultraspiracle (RXR/USP) and the ecdysone receptor (EcR). Here, the role of these receptors in the endocrine control of reproduction is examined in the cockroach Diploptera punctata. We report the sequence of four DpRXR and three DpEcR splice variants, including the first description of a Drosophila EcRB2-like isoform in a hemimetabolous insect. DpRXR and DpEcR are broadly expressed in the tissues of adult females, with relatively high transcript levels in the corpora allata (CA), nervous tissue and ovary. Developmental profiling revealed an inverse correlation between DpRXR and DpEcR expression and the activity of the CA. RNAi-mediated depletion of DpRXR and DpEcR did not affect oocyte growth, but inhibited oviposition and impaired chorion formation. Retained oocytes exhibited a degenerating follicular epithelium and were slowly resorbed. Treated animals showed significantly higher rates of JH biosynthesis and a decrease in ecdysteroid titers at the end of vitellogenesis. Reduction of DpRXR and DpEcR expression resulted in an upregulation of genes involved in JH production and a downregulation of allatostatin receptor mRNA in the CA. Treatment with dsRNA also affected the expression of genes downstream of JH in target tissues including vitellogenin and Kr├╝ppel-homolog 1 as well as Broad-Complex, an early ecdysone response gene. Overall, results suggest that DpRXR and DpEcR are not required early in the reproductive cycle when events are JH-dependent, but do mediate critical ecdysteroid feedback to the CA late in the gonadotropic cycle.

How Did Arthropod Sesquiterpenoids and Ecdysteroids Arise? Comparison of Hormonal Pathway Genes in Noninsect Arthropod Genomes

Qu Z, Kenny NJ, Lam HM, Chan TF, Chu KH, Bendena WG, Tobe SS, Hui JH

Genome Biol Evol 2015 Jul;7(7):1951-9

PMID: 26112967


The phylum Arthropoda contains the largest number of described living animal species, with insects and crustaceans dominating the terrestrial and aquatic environments, respectively. Their successful radiations have long been linked to their rigid exoskeleton in conjunction with their specialized endocrine systems. In order to understand how hormones can contribute to the evolution of these animals, here, we have categorized the sesquiterpenoid and ecdysteroid pathway genes in the noninsect arthropod genomes, which are known to play important roles in the regulation of molting and metamorphosis in insects. In our analyses, the majority of gene homologs involved in the biosynthetic, degradative, and signaling pathways of sesquiterpenoids and ecdysteroids can be identified, implying these two hormonal systems were present in the last common ancestor of arthropods. Moreover, we found that the “Broad-Complex” was specifically gained in the Pancrustacea, and the innovation of juvenile hormone (JH) in the insect linage correlates with the gain of the JH epoxidase (CYP15A1/C1) and the key residue changes in the binding domain of JH receptor (“Methoprene-tolerant”). Furthermore, the gain of “Phantom” differentiates chelicerates from the other arthropods in using ponasterone A rather than 20-hydroxyecdysone as molting hormone. This study establishes a comprehensive framework for interpreting the evolution of these vital hormonal pathways in these most successful animals, the arthropods, for the first time.