Darrell Desveaux

faculty_img Academic Title: Professor

Campus: St. George

CSB Appointment: Full

Primary Undergraduate Department:
Cell & Systems Biology

Graduate Programs:
Cell & Systems Biology
Genome Biology & Bioinformatics

Titles and Honors:
Canada Research Chair in Plant-Microbe Systems Biology

Academic or Administrative Appointments:
Associate Chair for Graduate Studies


Education:
Ph.D. University of Montreal 2002 M.Sc. McGill University 1998 B.Sc. McGill University 1997

 

Mailing Address
Department of Cell & Systems Biology
University of Toronto
25 Willcocks St.
Toronto, ON M5S 3B2
Canada

 

Contact Information
Office phone: 416-978-7153
Office: ESC 3074
Lab: ESC 3068
Lab phone: 416-978-3036
Email: darrell.desveaux@utoronto.ca
URL: http://labs.csb.utoronto.ca/desveaux

 

Research Areas
Biotechnology
Chemical Biology
Functional Genomics
Genetics
Microbiology
Molecular Biology
Pathology
Plant Biology
Proteomics
Structural Biology
Systems Biology

 

Research

Strains of the phytopathogen Pseudomonas syringae can infect and cause disease in hundreds of plant species. Like many Gram-negative bacterial pathogens, the ability of P. syringae to cause disease is dependent on the type III secretion system and the effector proteins delivered into host cells via this system. A current challenge in the study of plant pathology is to understand the pathogenic advantage conveyed by type III effectors on susceptible host plants. P. syringae possesses an arsenal of type III effector proteins (up to 40 in some strains) which it injects into host cells. These effectors play a central role in determining the outcome of an interaction with a potential host. The Desveaux lab aims to understand how the network of biological events induced by the arsenal of P. syringae type III effectors allows this plant pathogen to overcome its host’s defences and establish and/or maintain a favourable environment for pathogenesis. Since host targets of type III effectors include critical components of disease resistance signalling networks, we also contribute to the understanding of host defence responses. We are using proteomics, structural biology, chemical biology, genetics and biochemistry to elucidate the molecular mechanisms of pathogen virulence and host resistance.

 

Publications

2014

Top
The Pseudomonas syringae Type III Effector HopF2 Suppresses Arabidopsis Stomatal Immunity.Hurley B, Lee D, Mott A, Wilton M, Liu J, Liu YC, Angers S, Coaker G, Guttman DS, Desveaux D.PLoS ONE 2014;9(12):e114921
pubmed
Proteomics of effector-triggered immunity (ETI) in plants.Hurley B, Subramaniam R, Guttman DS, Desveaux D.Virulence 2014 Sep;5(7)
pubmed
The ABCs and 123s of Bacterial Secretion Systems in Plant Pathogenesis.Chang JH, Desveaux D, Creason AL.Annu Rev Phytopathol 2014 Aug;52:317-45
pubmed
A mesoscale abscisic acid hormone interactome reveals a dynamic signaling landscape in Arabidopsis.Lumba S, Toh S, Handfield LF, Swan M, Liu R, Youn JY, Cutler SR, Subramaniam R, Provart N, Moses A, Desveaux D, McCourt P.Dev. Cell 2014 May;29(3):360-72
pubmed
Peptide binding properties of the three PDZ domains of Bazooka (Drosophila Par-3).Yu CG, Tonikian R, Felsensteiner C, Jhingree JR, Desveaux D, Sidhu SS, Harris TJ.PLoS ONE 2014;9(1):e86412
pubmed
The rise of the undead: Pseudokinases as mediators of effector-triggered immunity.Lewis JD, Lo T, Bastedo P, Guttman DS, Desveaux D.Plant Signal Behav 2014 Jan;9(1)
pubmed
Arabidopsis GOLDEN2-LIKE (GLK) transcription factors activate jasmonic acid (JA)-dependent disease susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis, as well as JA-independent plant immunity against the necrotrophic pathogen Botrytis cinerea.Murmu J, Wilton M, Allard G, Pandeya R, Desveaux D, Singh J, Subramaniam R.Mol. Plant Pathol. 2014 Feb;15(2):174-84
pubmed
Next-generation mapping of genetic mutations using bulk population sequencing.Austin RS, Chatfield SP, Desveaux D, Guttman DS.Methods Mol. Biol. 2014;1062:301-15
pubmed

2013

Top
The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a.Lewis JD, Lee AH, Hassan JA, Wan J, Hurley B, Jhingree JR, Wang PW, Lo T, Youn JY, Guttman DS, Desveaux D.Proc. Natl. Acad. Sci. U.S.A. 2013 Nov;110(46):18722-7
pubmed
Phytopathogen type III effectors as probes of biological systems.Lee AH, Middleton MA, Guttman DS, Desveaux D.Microb Biotechnol 2013 May;6(3):230-40
pubmed

2012

Top
Forward chemical genetic screens in Arabidopsis identify genes that influence sensitivity to the phytotoxic compound sulfamethoxazole.Schreiber KJ, Austin RS, Gong Y, Zhang J, Fung P, Wang PW, Guttman DS, Desveaux D.BMC Plant Biol. 2012;12:226
pubmed
A high-throughput forward genetic screen identifies genes required for virulence of Pseudomonas syringae pv. maculicola ES4326 on Arabidopsis.Schreiber KJ, Ye D, Fich E, Jian A, Lo T, Desveaux D.PLoS ONE 2012;7(8):e41461
pubmed
A bacterial acetyltransferase destroys plant microtubule networks and blocks secretion.Lee AH, Hurley B, Felsensteiner C, Yea C, Ckurshumova W, Bartetzko V, Wang PW, Quach V, Lewis JD, Liu YC, Börnke F, Angers S, Wilde A, Guttman DS, Desveaux D.PLoS Pathog. 2012 Feb;8(2):e1002523
pubmed
Quantitative Interactor Screening with next-generation Sequencing (QIS-Seq) identifies Arabidopsis thaliana MLO2 as a target of the Pseudomonas syringae type III effector HopZ2.Lewis JD, Wan J, Ford R, Gong Y, Fung P, Nahal H, Wang PW, Desveaux D, Guttman DS.BMC Genomics 2012;13:8
pubmed

2011

Top
The YopJ superfamily in plant-associated bacteria.Lewis JD, Lee A, Ma W, Zhou H, Guttman DS, Desveaux D.Mol. Plant Pathol. 2011 Dec;12(9):928-37
pubmed
The roles of ABA in plant-pathogen interactions.Cao FY, Yoshioka K, Desveaux D.J. Plant Res. 2011 Jul;124(4):489-99
pubmed
AlgW regulates multiple Pseudomonas syringae virulence strategies.Schreiber KJ, Desveaux D.Mol. Microbiol. 2011 Apr;80(2):364-77
pubmed
Found in translation: high-throughput chemical screening in Arabidopsis thaliana identifies small molecules that reduce Fusarium head blight disease in wheat.Schreiber KJ, Nasmith CG, Allard G, Singh J, Subramaniam R, Desveaux D.Mol. Plant Microbe Interact. 2011 Jun;24(6):640-8
pubmed
Next-generation genomics of Pseudomonas syringae.O'Brien HE, Desveaux D, Guttman DS.Curr. Opin. Microbiol. 2011 Feb;14(1):24-30
pubmed

2010

Top
Lessons learned from type III effector transgenic plants.Wilton M, Desveaux D.Plant Signal Behav 2010 Jun;5(6):746-8
pubmed
Allele-specific virulence attenuation of the Pseudomonas syringae HopZ1a type III effector via the Arabidopsis ZAR1 resistance protein.Lewis JD, Wu R, Guttman DS, Desveaux D.PLoS Genet. 2010 Apr;6(4):e1000894
pubmed
The type III effector HopF2Pto targets Arabidopsis RIN4 protein to promote Pseudomonas syringae virulence.Wilton M, Subramaniam R, Elmore J, Felsensteiner C, Coaker G, Desveaux D.Proc. Natl. Acad. Sci. U.S.A. 2010 Feb;107(5):2349-54
pubmed
Plant chemical genetics.McCourt P, Desveaux D.New Phytol. 2010 Jan;185(1):15-26
pubmed

2009

Top
The targeting of plant cellular systems by injected type III effector proteins.Lewis JD, Guttman DS, Desveaux D.Semin. Cell Dev. Biol. 2009 Dec;20(9):1055-63
pubmed
Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins.Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR.Science 2009 May;324(5930):1068-71
pubmed

2008

Top
The HopZ family of Pseudomonas syringae type III effectors require myristoylation for virulence and avirulence functions in Arabidopsis thaliana.Lewis JD, Abada W, Ma W, Guttman DS, Desveaux D.J. Bacteriol. 2008 Apr;190(8):2880-91
pubmed
A high-throughput chemical screen for resistance to Pseudomonas syringae in Arabidopsis.Schreiber K, Ckurshumova W, Peek J, Desveaux D.Plant J. 2008 May;54(3):522-31
pubmed

2007

Top
The HopX (AvrPphE) family of Pseudomonas syringae type III effectors require a catalytic triad and a novel N-terminal domain for function.Nimchuk ZL, Fisher EJ, Desveaux D, Chang JH, Dangl JL.Mol. Plant Microbe Interact. 2007 Apr;20(4):346-57
pubmed
Type III effector activation via nucleotide binding, phosphorylation, and host target interaction.Desveaux D, Singer AU, Wu AJ, McNulty BC, Musselwhite L, Nimchuk Z, Sondek J, Dangl JL.PLoS Pathog. 2007 Mar;3(3):e48
pubmed

2006

Top
Type III effector proteins: doppelgangers of bacterial virulence.Desveaux D, Singer AU, Dangl JL.Curr. Opin. Plant Biol. 2006 Aug;9(4):376-82
pubmed

2005

Top
The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation.Kim HS, Desveaux D, Singer AU, Patel P, Sondek J, Dangl JL.Proc. Natl. Acad. Sci. U.S.A. 2005 May;102(18):6496-501
pubmed
Whirly transcription factors: defense gene regulation and beyond.Desveaux D, Maréchal A, Brisson N.Trends Plant Sci. 2005 Feb;10(2):95-102
pubmed

2004

Top
Crystal structures of the type III effector protein AvrPphF and its chaperone reveal residues required for plant pathogenesis.Singer AU, Desveaux D, Betts L, Chang JH, Nimchuk Z, Grant SR, Dangl JL, Sondek J.Structure 2004 Sep;12(9):1669-81
pubmed
A "Whirly" transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis.Desveaux D, Subramaniam R, Després C, Mess JN, Lévesque C, Fobert PR, Dangl JL, Brisson N.Dev. Cell 2004 Feb;6(2):229-40
pubmed

2003

Top
The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1.Després C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert PR.Plant Cell 2003 Sep;15(9):2181-91
pubmed

2002

Top
A new family of plant transcription factors displays a novel ssDNA-binding surface.Desveaux D, Allard J, Brisson N, Sygusch J.Nat. Struct. Biol. 2002 Jul;9(7):512-7
pubmed
Crystallization and preliminary X-ray crystallographic analysis of p24, a component of the potato nuclear factor PBF-2.Desveaux D, Allard J, Brisson N, Sygusch J.Acta Crystallogr. D Biol. Crystallogr. 2002 Feb;58(Pt 2):296-8
pubmed