William Ryu

faculty_img Academic Title: Assistant Professor

Campus: St. George

CSB Appointment: Cross Appointment

Primary Undergraduate Department:
Physics

Graduate Programs:
Cell & Systems Biology
Developmental Biology
Neuroscience

Titles and Honors:


Academic or Administrative Appointments:


Education:
Ph.D. Biophysics, Harvard University
B.A. Physics, Princeton University

 

Mailing Address
Department of Physics
University of Toronto
25 Harbord St.
Toronto, ON M5S 3G5
Canada
 

 

Contact Information
Office phone: 416-978-2973 
Office: CCBR 302,MP508 
Lab: CCBR 320,MP511a 
Lab phone: 416-978-8287 
Email: wryu@physics.utoronto.ca 
URL:

 

Research Areas
Microbiology
Neurobiology
Quantitative Biology
Systems Biology

 

Research

Sensing and responding to changes in the environment is a hallmark of living systems, and a major challenge of systems biology is to understand the biological networks that connect sensory information to behavioral responses. We are interested in how biochemical and neuronal networks encode and process sensory information to produce adaptive locomotory behavior, and how this behavior benefits the organism in their natural environment. We study the sensory behavior of two model organisms, E. coli and C. elegans. These organisms can sense the world as we do. They use their sense of smell to find their way to food (chemotaxis) or use temperature measurements to move to cooler areas when things get too hot (thermotaxis). We study E. coli because it is a model of how biochemical networks process sensory information in single cells. Discovering how bacteria measure and process this information will likely reveal some design principles of networks in all cells. C. elegans is a nematode that gets through life with a surprisingly small number of neurons (~ 300), and so it is an excellent model of how small neuronal networks process sensory information. Its compact neuronal network may allow us to understand complete sensory pathways from sensory neuron to motor output. Using the worm system, we hope to understand the processing of “complex” stimuli like thermal pain. Our work is interdisciplinary. We use a combination of techniques that span the areas of genetics, physiology, photonics, and biological physics. We also work hard to develop new instrumentation and computational tools.

 

Publications

2014

Top
Mechanistic analysis of the search behaviour of Caenorhabditis elegans.Salvador LC, Bartumeus F, Levin SA, Ryu WS.J R Soc Interface 2014 Mar;11(92):20131092
pubmed

2013

Top
Behavioral response of Caenorhabditis elegans to localized thermal stimuli.Mohammadi A, Byrne Rodgers J, Kotera I, Ryu WS.BMC Neurosci 2013;14(1):66
pubmed
Viscoelastic properties of the nematode Caenorhabditis elegans, a self-similar, shear-thinning worm.Backholm M, Ryu WS, Dalnoki-Veress K.Proc. Natl. Acad. Sci. U.S.A. 2013 Mar;110(12):4528-33
pubmed
Temperature-dependent behaviours are genetically variable in the nematode Caenorhabditis briggsae.Stegeman GW, de Mesquita MB, Ryu WS, Cutter AD.J. Exp. Biol. 2013 Mar;216(Pt 5):850-8
pubmed

2012

Top
C. elegans tracking and behavioral measurement.Likitlersuang J, Stephens G, Palanski K, Ryu WS.J Vis Exp 2012;(69):e4094
pubmed
Multiparameter behavioral profiling reveals distinct thermal response regimes in Caenorhabditis elegans.Ghosh R, Mohammadi A, Kruglyak L, Ryu WS.BMC Biol. 2012;10:85
pubmed

2011

Top
An imbalancing act: gap junctions reduce the backward motor circuit activity to bias C. elegans for forward locomotion.Kawano T, Po MD, Gao S, Leung G, Ryu WS, Zhen M.Neuron 2011 Nov;72(4):572-86
pubmed
Emergence of long timescales and stereotyped behaviors in Caenorhabditis elegans.Stephens GJ, Bueno de Mesquita M, Ryu WS, Bialek W.Proc. Natl. Acad. Sci. U.S.A. 2011 May;108(18):7286-9
pubmed
Thermal robustness of signaling in bacterial chemotaxis.Oleksiuk O, Jakovljevic V, Vladimirov N, Carvalho R, Paster E, Ryu WS, Meir Y, Wingreen NS, Kollmann M, Sourjik V.Cell 2011 Apr;145(2):312-21
pubmed

2010

Top
From modes to movement in the behavior of Caenorhabditis elegans.Stephens GJ, Johnson-Kerner B, Bialek W, Ryu WS.PLoS ONE 2010;5(11):e13914
pubmed
Particle size dependence of the dynamic photophysical properties of NaYF4:Yb, Er nanocrystals.Lim SF, Ryu WS, Austin RH.Opt Express 2010 Feb;18(3):2309-16
pubmed

2009

Top
Upconverting nanophosphors for bioimaging.Lim SF, Riehn R, Tung CK, Ryu WS, Zhuo R, Dalland J, Austin RH.Nanotechnology 2009 Oct;20(40):405701
pubmed

2008

Top
Enhanced Caenorhabditis elegans locomotion in a structured microfluidic environment.Park S, Hwang H, Nam SW, Martinez F, Austin RH, Ryu WS.PLoS ONE 2008;3(6):e2550
pubmed
Dimensionality and dynamics in the behavior of C. elegans.Stephens GJ, Johnson-Kerner B, Bialek W, Ryu WS.PLoS Comput. Biol. 2008 Apr;4(4):e1000028
pubmed
The thermal impulse response of Escherichia coli.Paster E, Ryu WS.Proc. Natl. Acad. Sci. U.S.A. 2008 Apr;105(14):5373-7
pubmed

2007

Top
A comprehensive genetic characterization of bacterial motility.Girgis HS, Liu Y, Ryu WS, Tavazoie S.PLoS Genet. 2007 Sep;3(9):1644-60
pubmed

2006

Top
In vivo and scanning electron microscopy imaging of up-converting nanophosphors in Caenorhabditis elegans.Lim SF, Riehn R, Ryu WS, Khanarian N, Tung CK, Tank D, Austin RH.Nano Lett. 2006 Feb;6(2):169-74
pubmed

2004

Top
The CMK-1 CaMKI and the TAX-4 Cyclic nucleotide-gated channel regulate thermosensory neuron gene expression and function in C. elegans.Satterlee JS, Ryu WS, Sengupta P.Curr. Biol. 2004 Jan;14(1):62-8
pubmed

2003

Top
Biomechanics: bacterial flagellar switching under load.Fahrner KA, Ryu WS, Berg HC.Nature 2003 Jun;423(6943):938
pubmed

2002

Top
Thermotaxis in Caenorhabditis elegans analyzed by measuring responses to defined Thermal stimuli.Ryu WS, Samuel AD.J. Neurosci. 2002 Jul;22(13):5727-33
pubmed
Force and velocity of mycoplasma mobile gliding.Miyata M, Ryu WS, Berg HC.J. Bacteriol. 2002 Apr;184(7):1827-31
pubmed