Neurons Are Recruited to a Memory Trace Based on Relative Neuronal Excitability Immediately before Training

Yiu AP, Mercaldo V, Yan C, Richards B, Rashid AJ, Hsiang HL, Pressey J, Mahadevan V, Tran MM, Kushner SA, Woodin MA, Frankland PW, Josselyn SA

Neuron 2014 Aug;83(3):722-35

PMID: 25102562


UNLABELLED: Memories are thought to be sparsely encoded in neuronal networks, but little is known about why a given neuron is recruited or allocated to a particular memory trace. Previous research shows that in the lateral amygdala (LA), neurons with increased CREB are selectively recruited to a fear memory trace. CREB is a ubiquitous transcription factor implicated in many cellular processes. Which process mediates neuronal memory allocation? One hypothesis is that CREB increases neuronal excitability to bias neuronal recruitment, although this has not been shown experimentally. Here we use several methods to increase neuronal excitability and show this both biases recruitment into the memory trace and enhances memory formation. Moreover, artificial activation of these neurons alone is a sufficient retrieval cue for fear memory expression, showing that these neurons are critical components of the memory trace. These results indicate that neuronal memory allocation is based on relative neuronal excitability immediately before training.


Muscarinic acetylcholine receptor activation prevents disinhibition-mediated LTP in the hippocampus

Takkala P, Woodin MA

Front Cell Neurosci 2013;7:16

PMID: 23450426


Disinhibition-mediated long-term potentiation (LTP) in the CA1 region of the hippocampus involves GABAergic synaptic plasticity at feedforward inhibitory inputs, resulting in the reduced shunting of glutamatergic excitatory currents. The GABAergic plasticity which underlies disinhibition-mediated LTP results from a Ca(2+)-dependent decrease in the activity of the K(+)-Cl(-) cotransporter (KCC2), depolarizing the reversal potential for GABAA receptor-mediated currents (EGABA), thereby attenuating inhibition. Muscarinic acetylcholine receptor (mAChR) activation has previously been shown to regulate classic glutamatergic LTP, modulate intracellular [Ca(2+)] and signaling, and facilitate the excitability of GABAergic interneurons in the CA1. Based on these effects, and the ability of mAChR activation to regulate CA1 pyramidal neuron KCC2 expression, we proposed that mAChR activation would modulate disinhibition-mediated LTP. To test this prediction, we made whole cell recordings from CA1 pyramidal neurons in hippocampal slices. Disinhibition-mediated LTP was induced using a spike timing-dependent plasticity (STDP) protocol, which involved coincident pre-synaptic stimulation and post-synaptic current injection (at 5 Hz for 60 s). We found that mAChR activation via carbachol (CCh) prevented the induction of disinhibition-mediated LTP. Moreover, in the presence of CCh, EGABA failed to depolarize following plasticity induction. Lastly, we recorded the paired-pulse ratio (PPR) during the induction of disinhibition-mediated LTP and found that in the presence of CCh, plasticity induction induced a significant paired-pulse depression. This suggests that pre-synaptic mAChR activation may prevent the post-synaptic expression of disinhibition-mediated LTP.

Patterns across multiple memories are identified over time

Richards BA, Xia F, Santoro A, Husse J, Woodin MA, Josselyn SA, Frankland PW

Nat. Neurosci. 2014 Jul;17(7):981-6

PMID: 24880213


Memories are not static but continue to be processed after encoding. This is thought to allow the integration of related episodes via the identification of patterns. Although this idea lies at the heart of contemporary theories of systems consolidation, it has yet to be demonstrated experimentally. Using a modified water-maze paradigm in which platforms are drawn stochastically from a spatial distribution, we found that mice were better at matching platform distributions 30 d compared to 1 d after training. Post-training time-dependent improvements in pattern matching were associated with increased sensitivity to new platforms that conflicted with the pattern. Increased sensitivity to pattern conflict was reduced by pharmacogenetic inhibition of the medial prefrontal cortex (mPFC). These results indicate that pattern identification occurs over time, which can lead to conflicts between new information and existing knowledge that must be resolved, in part, by computations carried out in the mPFC.