Detection of Parasitic Plant Suicide Germination Compounds Using a High-Throughput Arabidopsis HTL/KAI2 Strigolactone Perception System

Toh S, Holbrook-Smith D, Stokes ME, Tsuchiya Y, McCourt P

Chem. Biol. 2014 Aug;21(8):988-98

PMID: 25126711


Strigolactones are terpenoid-based plant hormones that act as communication signals within a plant, between plants and fungi, and between parasitic plants and their hosts. Here we show that an active enantiomer form of the strigolactone GR24, the germination stimulant karrikin, and a number of structurally related small molecules called cotylimides all bind the HTL/KAI2 α/β hydrolase in Arabidopsis. Strigolactones and cotylimides also promoted an interaction between HTL/KAI2 and the F-box protein MAX2 in yeast. Identification of this chemically dependent protein-protein interaction prompted the development of a yeast-based, high-throughput chemical screen for potential strigolactone mimics. Of the 40 lead compounds identified, three were found to have in planta strigolactone activity using Arabidopsis-based assays. More importantly, these three compounds were all found to stimulate suicide germination of the obligate parasitic plant Striga hermonthica. These results suggest that screening strategies involving yeast/Arabidopsis models may be useful in combating parasitic plant infestations.

Towards personalized agriculture: what chemical genomics can bring to plant biotechnology

Stokes ME, McCourt P

Front Plant Sci 2014;5:344

PMID: 25183965


In contrast to the dominant drug paradigm in which compounds were developed to “fit all,” new models focused around personalized medicine are appearing in which treatments are developed and customized for individual patients. The agricultural biotechnology industry (Ag-biotech) should also think about these new personalized models. For example, most common herbicides are generic in action, which led to the development of genetically modified crops to add specificity. The ease and accessibility of modern genomic analysis, when wedded to accessible large chemical space, should facilitate the discovery of chemicals that are more selective in their utility. Is it possible to develop species-selective herbicides and growth regulators? More generally put, is plant research at a stage where chemicals can be developed that streamline plant development and growth to various environments? We believe the advent of chemical genomics now opens up these and other opportunities to “personalize” agriculture. Furthermore, chemical genomics does not necessarily require genetically tractable plant models, which in principle should allow quick translation to practical applications. For this to happen, however, will require collaboration between the Ag-biotech industry and academic labs for early stage research and development, a situation that has proven very fruitful for Big Pharma.

ABI3 controls embryo degreening through Mendel’s I locus

Delmas F, Sankaranarayanan S, Deb S, Widdup E, Bournonville C, Bollier N, Northey JG, McCourt P, Samuel MA

Proc. Natl. Acad. Sci. U.S.A. 2013 Oct;110(40):E3888-94

PMID: 24043799


Chlorophyll (chl) is essential for light capture and is the starting point that provides the energy for photosynthesis and thus plant growth. Obviously, for this reason, retention of the green chlorophyll pigment is considered a desirable crop trait. However, the presence of chlorophyll in mature seeds can be an undesirable trait that can affect seed maturation, seed oil quality, and meal quality. Occurrence of mature green seeds in oil crops such as canola and soybean due to unfavorable weather conditions during seed maturity is known to cause severe losses in revenue. One recently identified candidate that controls the chlorophyll degradation machinery is the stay-green gene, SGR1 that was mapped to Mendel’s I locus responsible for cotyledon color (yellow versus green) in peas. A defect in SGR1 leads to leaf stay-green phenotypes in Arabidopsis and rice, but the role of SGR1 in seed degreening and the signaling machinery that converges on SGR1 have remained elusive. To decipher the gene regulatory network that controls degreening in Arabidopsis, we have used an embryo stay-green mutant to demonstrate that embryo degreening is achieved by the SGR family and that this whole process is regulated by the phytohormone abscisic acid (ABA) through ABSCISIC ACID INSENSITIVE 3 (ABI3); a B3 domain transcription factor that has a highly conserved and essential role in seed maturation, conferring desiccation tolerance. Misexpression of ABI3 was sufficient to rescue cold-induced green seed phenotype in Arabidopsis. This finding reveals a mechanistic role for ABI3 during seed degreening and thus targeting of this pathway could provide a solution to the green seed problem in various oil-seed crops.