Analyses of Protein Interaction Networks Using Computational Tools.

Dong S, Provart NJ

Methods Mol. Biol. 2018; 1794():97-117

PMID: 29855953

Abstract

The knowledge of protein-protein interactions (PPIs) and PPI networks (PPINs) is the key to starting to understand the biological processes inside the cell. Many computational tools have been designed to help explore PPIs and PPINs, such as those for interaction detection, reliability assessment and interaction network construction. Here, the application of computational tools is reviewed from three perspectives: PPI database construction, PPI prediction, and interaction network construction and analysis. This overview will provide researchers guidance on choosing appropriate methods for exploring PPIs.

The transcriptional landscape of polyploid wheat.

Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, van Ex F, Pasha A, Khedikar Y, Robinson SJ, Cory AT, Florio T, Concia L, Juery C, Schoonbeek H, Steuernagel B, Xiang D, Ridout CJ, Chalhoub B, Mayer KFX, Benhamed M, Latrasse D, Bendahmane A, , Wulff BBH, Appels R, Tiwari V, Datla R, Choulet F, Pozniak CJ, Provart NJ, Sharpe AG, Paux E, Spannagl M, Bräutigam A, Uauy C

Science 2018 08 17; 361(6403):

PMID: 30115782

Abstract

The coordinated expression of highly related homoeologous genes in polyploid species underlies the phenotypes of many of the world’s major crops. Here we combine extensive gene expression datasets to produce a comprehensive, genome-wide analysis of homoeolog expression patterns in hexaploid bread wheat. Bias in homoeolog expression varies between tissues, with ~30% of wheat homoeologs showing nonbalanced expression. We found expression asymmetries along wheat chromosomes, with homoeologs showing the largest inter-tissue, inter-cultivar, and coding sequence variation, most often located in high-recombination distal ends of chromosomes. These transcriptionally dynamic genes potentially represent the first steps toward neo- or subfunctionalization of wheat homoeologs. Coexpression networks reveal extensive coordination of homoeologs throughout development and, alongside a detailed expression atlas, provide a framework to target candidate genes underpinning agronomic traits in wheat.

Regulation of Root Angle and Gravitropism.

Toal TW, Ron M, Gibson D, Kajala K, Splitt B, Johnson LS, Miller ND, Slovak R, Gaudinier A, Patel R, de Lucas M, Provart NJ, Spalding EP, Busch W, Kliebenstein DJ, Brady SM

G3 (Bethesda) 2018 12 10; 8(12):3841-3855

PMID: 30322904

Abstract

Regulation of plant root angle is critical for obtaining nutrients and water and is an important trait for plant breeding. A plant’s final, long-term root angle is the net result of a complex series of decisions made by a root tip in response to changes in nutrient availability, impediments, the gravity vector and other stimuli. When a root tip is displaced from the gravity vector, the short-term process of gravitropism results in rapid reorientation of the root toward the vertical. Here, we explore both short- and long-term regulation of root growth angle, using natural variation in tomato to identify shared and separate genetic features of the two responses. Mapping of expression quantitative trait loci mapping and leveraging natural variation between and within species including Arabidopsis suggest a role for 27 and in determining root angle.