Professor Darrell Desveaux

Darrell Desveaux

Professor


Campus

St. George (downtown)

CSB Appointment

Full

Research Areas

Bioinformatics / Computational Biology, Biotechnology, Chemical Biology, Genetics / Genomics, Microbiology, Molecular Biology, Pathology, Plant Biology, Proteomics, Quantitative Biology /Modelling, Structural Biology, Systems Biology

Education

Ph.D. University of Montreal 2002
M.Sc. McGill University 1998
B.Sc. McGill University 1997

Titles and Honors

Canada Research Chair in Plant-Microbe Systems Biology

Primary Undergraduate Department

Cell & Systems Biology

Graduate Programs

Cell & Systems Biology
Genome Biology & Bioinformatics

Academic or Administrative Appointments

Associate Chair for Graduate Studies

Research Description

Strains of the phytopathogen Pseudomonas syringae can infect and cause disease in hundreds of plant species. Like many Gram-negative bacterial pathogens, the ability of P. syringae to cause disease is dependent on the type III secretion system and the effector proteins delivered into host cells via this system. A current challenge in the study of plant pathology is to understand the pathogenic advantage conveyed by type III effectors on susceptible host plants. P. syringae possesses an arsenal of type III effector proteins (up to 40 in some strains) which it injects into host cells. These effectors play a central role in determining the outcome of an interaction with a potential host. The Desveaux lab aims to understand how the network of biological events induced by the arsenal of P. syringae type III effectors allows this plant pathogen to overcome its host’s defences and establish and/or maintain a favourable environment for pathogenesis. Since host targets of type III effectors include critical components of disease resistance signalling networks, we also contribute to the understanding of host defence responses. We are using proteomics, structural biology, chemical biology, genetics and biochemistry to elucidate the molecular mechanisms of pathogen virulence and host resistance.


Contact Information

Office Phone: 416-978-7153
Office: ESC3074
Lab: ESC3068
Lab Phone: 416-978-3036
Email

Mailing Address

Department of Cell & Systems Biology
University of Toronto
25 Willcocks St.
Toronto, ON M5S 3B2
Canada

Visit lab’s website


Recent News

Benign bacteria can cooperatively cause virulence

“In science, we often focus on a single ‘wild type’ organism, but even a single species of bacteria has as much variation as the instruments in a…

Read More


Publications

2024

The effector-triggered immunity landscape of tomato against Pseudomonas syringae

Lonjon F, Lai Y, Askari N, Aiyar N, Bundalovic-Torma C, Laflamme B, Wang PW, Desveaux D, Guttman DS
2024, Nature Communications, 10.1038/s41467-024-49425-4

Back to top

2023

Cooperative virulence via the collective action of secreted pathogen effectors

Ruiz-Bedoya T, Wang PW, Desveaux D, Guttman DS
2023, Nature Microbiology, 10.1038/s41564-023-01328-8

Back to top

2022

RecPD: A Recombination-aware measure of phylogenetic diversity

Coelho LP, Bundalovic-Torma C, Desveaux D, Guttman DS
2022, PLOS Computational Biology, 10.1371/journal.pcbi.1009899

Metaeffector interactions modulate the type III effector-triggered immunity load of Pseudomonas syringae

Dinesh-Kumar SP, Martel A, Laflamme B, Breit-McNally C, Wang P, Lonjon F, Desveaux D, Guttman DS
2022, PLOS Pathogens, 10.1371/journal.ppat.1010541

Predictive modeling of Pseudomonas syringae virulence on bean using gradient boosted decision trees

Baltrus DA, Almeida RND, Greenberg M, Bundalovic-Torma C, Martel A, Wang PW, Middleton MA, Chatterton S, Desveaux D, Guttman DS
2022, PLOS Pathogens, 10.1371/journal.ppat.1010716

ZAR1: Guardian of plant kinases

Breit-McNally C, Laflamme B, Singh RA, Desveaux D, Guttman DS
2022, Frontiers in Plant Science, 10.3389/fpls.2022.981684

The Arabidopsis effector-triggered immunity landscape is conserved in oilseed crops

Breit-McNally C, Desveaux D, Guttman DS
2022, Scientific Reports, 10.1038/s41598-022-10410-w

Back to top

2020

The pan-genome effector-triggered immunity landscape of a host-pathogen interaction

Laflamme B, Dillon MM, Martel A, Almeida RND, Desveaux D, Guttman DS
2020, Science, 10.1126/science.aax4079

Back to top

2019

Diversity and Evolution of Type III Secreted Effectors: A Case Study of Three Families.

Bastedo DP, Lo T, Laflamme B, Desveaux D, Guttman DS
2019, Current topics in microbiology and immunology, 31240408

Molecular Evolution of Type III Secreted Effector Proteins.

Dillon MM, Almeida RND, Laflamme B, Martel A, Weir BS, Desveaux D, Guttman DS
2019, Frontiers in plant science, 10, 418, 31024592

Identifying Type III Secreted Effector Function via a Yeast Genomic Screen.

Lee AH, Bastedo DP, Youn JY, Lo T, Middleton MA, Kireeva I, Lee JY, Sharifpoor S, Baryshnikova A, Zhang J, Wang PW, Peisajovich SG, Constanzo M, Andrews BJ, Boone CM, Desveaux D, Guttman DS
2019, G3 (Bethesda, Md.), 9, 535-547, 30573466

Back to top

2014

Proteomics of effector-triggered immunity (ETI) in plants

Hurley B, Subramaniam R, Guttman DS, Desveaux D
2014, Virulence, 5, 25290905

The Pseudomonas syringae Type III Effector HopF2 Suppresses Arabidopsis Stomatal Immunity

Hurley B, Lee D, Mott A, Wilton M, Liu J, Liu YC, Angers S, Coaker G, Guttman DS, Desveaux D
2014, PloS one, 9, e114921, 25503437

The ABCs and 123s of Bacterial Secretion Systems in Plant Pathogenesis

Chang JH, Desveaux D, Creason AL
2014, Annual review of phytopathology, 52, 317-45, 24906130

A mesoscale abscisic acid hormone interactome reveals a dynamic signaling landscape in Arabidopsis

Lumba S, Toh S, Handfield LF, Swan M, Liu R, Youn JY, Cutler SR, Subramaniam R, Provart N, Moses A, Desveaux D, McCourt P
2014, Developmental cell, 29, 360-72, 24823379

Peptide binding properties of the three PDZ domains of Bazooka (Drosophila Par-3)

Yu CG, Tonikian R, Felsensteiner C, Jhingree JR, Desveaux D, Sidhu SS, Harris TJ
2014, PloS one, 9, e86412, 24466078

The rise of the undead: Pseudokinases as mediators of effector-triggered immunity

Lewis JD, Lo T, Bastedo P, Guttman DS, Desveaux D
2014, Plant signaling & behavior, 9, 24398910

Next-generation mapping of genetic mutations using bulk population sequencing.

Austin RS, Chatfield SP, Desveaux D, Guttman DS
2014, Methods in molecular biology (Clifton, N.J.), 1062, 301-15, 24057374

Back to top

2013

The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a

Lewis JD, Lee AH, Hassan JA, Wan J, Hurley B, Jhingree JR, Wang PW, Lo T, Youn JY, Guttman DS, Desveaux D
2013, Proceedings of the National Academy of Sciences of the United States of America, 110, 18722-7, 24170858

Arabidopsis GOLDEN2-LIKE (GLK) transcription factors activate jasmonic acid (JA)-dependent disease susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis, as well as JA-independent plant immunity against the necrotrophic pathogen Botrytis cinerea

Murmu J, Wilton M, Allard G, Pandeya R, Desveaux D, Singh J, Subramaniam R
2014, Molecular plant pathology, 15, 174-84, 24393452

Phytopathogen type III effectors as probes of biological systems

Lee AH, Middleton MA, Guttman DS, Desveaux D
2013, Microbial biotechnology, 6, 230-40, 23433088

Back to top

2012

Forward chemical genetic screens in Arabidopsis identify genes that influence sensitivity to the phytotoxic compound sulfamethoxazole

Schreiber KJ, Austin RS, Gong Y, Zhang J, Fung P, Wang PW, Guttman DS, Desveaux D
2012, BMC plant biology, 12, 226, 23176361

A high-throughput forward genetic screen identifies genes required for virulence of Pseudomonas syringae pv. maculicola ES4326 on Arabidopsis

Schreiber KJ, Ye D, Fich E, Jian A, Lo T, Desveaux D
2012, PloS one, 7, e41461, 22870224

A bacterial acetyltransferase destroys plant microtubule networks and blocks secretion

Lee AH, Hurley B, Felsensteiner C, Yea C, Ckurshumova W, Bartetzko V, Wang PW, Quach V, Lewis JD, Liu YC, Börnke F, Angers S, Wilde A, Guttman DS, Desveaux D
2012, PLoS pathogens, 8, e1002523, 22319451

Quantitative Interactor Screening with next-generation Sequencing (QIS-Seq) identifies Arabidopsis thaliana MLO2 as a target of the Pseudomonas syringae type III effector HopZ2

Lewis JD, Wan J, Ford R, Gong Y, Fung P, Nahal H, Wang PW, Desveaux D, Guttman DS
2012, BMC genomics, 13, 8, 22230763

Back to top

2011

Found in translation: high-throughput chemical screening in Arabidopsis thaliana identifies small molecules that reduce Fusarium head blight disease in wheat

Schreiber KJ, Nasmith CG, Allard G, Singh J, Subramaniam R, Desveaux D
2011, Molecular plant-microbe interactions : MPMI, 24, 640-8, 21303209

The YopJ superfamily in plant-associated bacteria

Lewis JD, Lee A, Ma W, Zhou H, Guttman DS, Desveaux D
2011, Molecular plant pathology, 12, 928-37, 21726386

The roles of ABA in plant-pathogen interactions

Cao FY, Yoshioka K, Desveaux D
2011, Journal of plant research, 124, 489-99, 21380629

AlgW regulates multiple Pseudomonas syringae virulence strategies

Schreiber KJ, Desveaux D
2011, Molecular microbiology, 80, 364-77, 21306444

Next-generation genomics of Pseudomonas syringae

O'Brien HE, Desveaux D, Guttman DS
2011, Current opinion in microbiology, 14, 24-30, 21233007

Back to top

2010

Lessons learned from type III effector transgenic plants

Wilton M, Desveaux D
2010, Plant signaling & behavior, 5, 746-8, 20505348

Allele-specific virulence attenuation of the Pseudomonas syringae HopZ1a type III effector via the Arabidopsis ZAR1 resistance protein

Lewis JD, Wu R, Guttman DS, Desveaux D
2010, PLoS genetics, 6, e1000894, 20368970

The type III effector HopF2Pto targets Arabidopsis RIN4 protein to promote Pseudomonas syringae virulence

Wilton M, Subramaniam R, Elmore J, Felsensteiner C, Coaker G, Desveaux D
2010, Proceedings of the National Academy of Sciences of the United States of America, 107, 2349-54, 20133879

Back to top

2009

Plant chemical genetics

McCourt P, Desveaux D
2010, The New phytologist, 185, 15-26, 19825020

The targeting of plant cellular systems by injected type III effector proteins

Lewis JD, Guttman DS, Desveaux D
2009, Seminars in cell & developmental biology, 20, 1055-63, 19540926

Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins

Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR
2009, Science (New York, N.Y.), 324, 1068-71, 19407142

Back to top

2008

The HopZ family of Pseudomonas syringae type III effectors require myristoylation for virulence and avirulence functions in Arabidopsis thaliana

Lewis JD, Abada W, Ma W, Guttman DS, Desveaux D
2008, Journal of bacteriology, 190, 2880-91, 18263728

A high-throughput chemical screen for resistance to Pseudomonas syringae in Arabidopsis

Schreiber K, Ckurshumova W, Peek J, Desveaux D
2008, The Plant journal : for cell and molecular biology, 54, 522-31, 18248597

Back to top

2007

The HopX (AvrPphE) family of Pseudomonas syringae type III effectors require a catalytic triad and a novel N-terminal domain for function

Nimchuk ZL, Fisher EJ, Desveaux D, Chang JH, Dangl JL
2007, Molecular plant-microbe interactions : MPMI, 20, 346-57, 17427805

Type III effector activation via nucleotide binding, phosphorylation, and host target interaction

Desveaux D, Singer AU, Wu AJ, McNulty BC, Musselwhite L, Nimchuk Z, Sondek J, Dangl JL
2007, PLoS pathogens, 3, e48, 17397263

Back to top

2006

Type III effector proteins: doppelgangers of bacterial virulence

Desveaux D, Singer AU, Dangl JL
2006, Current opinion in plant biology, 9, 376-82, 16713730

Back to top

2005

The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation

Kim HS, Desveaux D, Singer AU, Patel P, Sondek J, Dangl JL
2005, Proceedings of the National Academy of Sciences of the United States of America, 102, 6496-501, 15845764

Whirly transcription factors: defense gene regulation and beyond

Desveaux D, Maréchal A, Brisson N
2005, Trends in plant science, 10, 95-102, 15708347

Back to top

2004

Crystal structures of the type III effector protein AvrPphF and its chaperone reveal residues required for plant pathogenesis

Singer AU, Desveaux D, Betts L, Chang JH, Nimchuk Z, Grant SR, Dangl JL, Sondek J
2004, Structure (London, England : 1993), 12, 1669-81, 15341731

A “Whirly” transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis

Desveaux D, Subramaniam R, Després C, Mess JN, Lévesque C, Fobert PR, Dangl JL, Brisson N
2004, Developmental cell, 6, 229-40, 14960277

Back to top

2003

The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1

Després C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert PR
2003, The Plant cell, 15, 2181-91, 12953119

Back to top

2002

A new family of plant transcription factors displays a novel ssDNA-binding surface

Desveaux D, Allard J, Brisson N, Sygusch J
2002, Nature structural biology, 9, 512-7, 12080340

Crystallization and preliminary X-ray crystallographic analysis of p24, a component of the potato nuclear factor PBF-2

Desveaux D, Allard J, Brisson N, Sygusch J
2002, Acta crystallographica. Section D, Biological crystallography, 58, 296-8, 11807255

Back to top